Tom Scheinfledt: Could you just sort state your name and your age for us?
Darin Fisher: My name is Darin Fisher and I’m 30 years old.
Olivia Ryan: What do you do here at Google?

DF: 1 work on Firefox primarily. | work on other things related to Firefox and I help
other teams who are trying to work with Firefox. There’s various things that Google’s
done to extend Firefox. We’ve published about five extensions I believe from the Google
toolbar to an anti-phishing extension to various other things that are meant to sort of
make Firefox more attractive to users so with my experience having worked on Mozilla, |
try to help other folks here who are trying to build extensions to Firefox, in addition to
just contributing directly to Firefox.

OR: How long have you worked on Mozilla projects or how did you come to work on
Mozilla projects?

DF: So it started for me by going to work for AOL and | started working on it in Dulles
on a little small team who was basically trying to embed a Mozilla rendering engine into
a client product that they were building and through that I learned about Mozilla for the
first time and shortly though after that | found out that there was a job opportunity at
Netscape on the west coast and | really wanted to come back to California because 1’d
gone to school out in California so | didn’t stay out in Dulles for very long. | was only
there for about three months before making the switch and so then | joined Netscape—
At the time they were already owned by AOL and I found out that there were several
different types of teams that | could work for and one was like work on the front end,
work on the AOL Instant Messaging component of the Netscape Communicator. One
was go work on the networking engine of the Gecko rendering system and that one was
more attractive to me because not knowing very much at all about Mozilla but having
experience with operating system level [PPIs], | felt like I could contribute to the
networking layer and the manager who was involved seemed like a really sharp guy who
| went to work for so | went and worked with them.

OR: Great. What are all the Mozilla projects that you’ve worked on?

DF: Well, so, for the beginning, | focused on the networking layer and | moved from
being sort of the newbie to becoming a module owner for the networking layer so— And
it’s just sort of taking on more responsibility in that area and so | continue to sort of look
over it but mostly it’s a maintenance kind of job and so more recently |1 worked on the
auto update system for Firefox. That sort of was my primary project last year. Before
that | worked on a lot of different sort of things like enhancing integration points with the
operating system.

For instance, for Firefox 1, | worked on adding support for advanced authentication in the
browser. A lot of people who are at companies sort of take for granted that Internet
Explorer is able to authenticate them to their corporate network. They don’t realize that

there’s some fancy authentication going on there and Firefox has always been sort of shut
out because we didn’t support that kind of authentication and so | worked with people in
the community, a guy from Sandia Labs helped a lot and we made that happen for
Firefox 1. It was sort of a small thing that nobody probably noticed but because I felt like
it just sort of took away one more barrier to entry.

OR: You mentioned you’re a module owner. How does that work?

DF: Well, so, in the Mozilla world basically if you— It’s really important that we find
people who care about particular areas of the code and it’s too much for one person to
understand everything that’s going on, so it’s broken up into modules and so what ends
up happening is if somebody’s very interested in a particular area and they can sort of
take ownership of it, meaning kind of watch out for what’s best for that area of the code,
monitor contributions, help review contributions, help assist other people make
contributions in that area and do so in a way that’s good for the whole project that’s sort
of consistent with where we want to take the project. Try not to introduce too much risk
when we’re trying to do a release, things of that sort, so basically people tend to take
modular ownership basically in a more ad hoc fashion. It’s sort of a matter of whoever
takes interest and whoever sort of decides that they really want to do that.

OR: Are you thought of as the supervisor of—

DF: Yeah, | think that’s the way you think about it, so if somebody had issues with sort
of— They wanted to do something with this little networking layer they would be
advised to talk to me or people who have worked in that area because— And the same
goes for other areas of the code. If | wanted to work on JavaScript | would want to go
talk to Brendan [Ike] because that’s his area of the code and he knows it best. He’d be
able to advise me the quickest so that’s sort of loosely how Mozilla projects are
organized. At the development level, it’s sort of a collection of modular owners and
peers who are working with people who have demonstrated that they basically have
leadership qualities enough to sort of keep things cohesive across the project.

OR: How do you generally communicate with the people who you work with in your
groups?

DF: E-mail, Instant Messaging and that sort. Basically when I see e-mail, though,
there’s a lot of different sort of things that are similar like mailing lists where we’re e-
mailing to broadcast out to the community. We have a bug system which is sort of like a
bulletin board, if you will. 1t’s for tracking defects but it’s also for tracking feature
enhancements and so that’s a way of sort of doing project management in a distributive
fashion. The bugs are sort of numbered so people can find them. That’s how you find a
certain topic, but then from there, it branches out and you get people commenting about
all the different things pertaining to that bug or feature request and that ends up being
quite a central point for communication and then obviously Instant Messaging is really
important for that sort of immediate kind of, hey, look what are we going to do about this
kind of thing so you can get that interactivity with the other developers and so we have a

[IRC] server that’s hosted by Mozilla.org and that’s sort of the central place where
everybody’s logged on, not always at the same time, but generally that’s a great place to
find out and to talk to people directly.

OR: Ben mentioned before that he thought it was important that a lot of this
communication be archived.

DF: Right.
OR: And that there’s like efforts—

DF: One of the things that’s always been a problem is that too much decision making
has happened in IRC. Too much decision making has happened in private e-mails such
that for new people to a project it looks like— It’s unclear how decisions are made. It’s
unclear how one contributes. It’s unclear how one gets involved. You can’t look to the
past and say that’s how they did it because it’s not archived and so, yeah, Ben has been a
proponent recently of trying to get people to use the mailing list where things are
archived or to use the news groups where things are archived, to put things on blogs, on
Wikis and 1’d say in the last year— | didn’t mention this when you asked about
communication, but Wikis have become a big, big, big communication tool for the
project because unlike a mailing list where it gets sort of— Things get lost as the thread
grows in size and it becomes hard to understand what was originally being discussed and
it’s hard to do revisions in a mailing list, it’s easier to have a back-and-forth conversation
and go down a tangent in a mailing list, but Wikis are great because in parallel to mailing
lists, you can have the Wiki where you’re revising that document that you’re discussing
in the mailing list and so you can always check back and say, oh, this is the latest date of
that Wiki document and here’s how it evolved over here on this mailing list. 1’ve found
that this works out well. The Wiki has been an invaluable tool for enabling us to build
out better design documentation and develop documentation.

Before, | guess, even though we had to develop a documentation system that involved

using a source code and repository tools, CVS and what-not, that was just too much of a
barrier for people and so we had a lot of really old documentation that was incompletely
and incorrect that would, again, be a big problem for new developers, new contributors.

OR: Would you say that strict ownership of specific areas of code are enforced?

DF: Notreally. So, again, it has a lot to do with sort of the modular owners, how
involved are they, and a lot of times people come and go from the project and modular
owners come and go. The problem is like with many things there’s not somebody there
to go sort of tidy things up. You have a lot of left over [craft] and so you have people
who are on paper as modular owners and on the website it says they’re modular owners,
but they’re not really involved in the project anymore and so it takes people who are
involved in the project to say who’s actually still involved and people don’t really keep
that up to date and so that could be a problem.

TS: How do those transitions occur when there’s someone who’s kind of gone inactive
and—

DF: It’s by— A couple— The most successful ways to make change happen, | mean,
basically somebody has to be aggressive and assertive and just take the bull by the horns
and say this is what I’m going to do. 1 think this is a good idea and by and large, if that
old modular owner’s not around anymore, then it doesn’t matter because they don’t care
anymore. They’re not part of the picture. They haven’t been involved, they’re not
involved, so somebody steps in and says they want to take over. Then other people still
get involved in the project will say, great, finally somebody who is going to care about
that area of the code.

TS: And so, in effect, they’re promoted to be the modular owner?

DF: Right. So, there is sort of a hierarchy where ultimately like Brendan Ike is sort of
sort of the over-arching kind of father figure for the project at the developer level like
he’ll make the final say on things like that, say, yes, | think this is a good idea. There’s
only a few people— He and maybe one other person has actually privileges to change
that document that says who the modular owners are, but basically it comes down to him
and a few other people that he might consult with and then basically just sort of what’s
popular opinion amongst the modular owners who are active.

TS: Do you have an example? Maybe you can give us an example of when that’s
happened and how it’s played out?

DF: Sure. The best example would be like when Netscape went away, so this problem
didn’t seem to exist as much, although it did when Netscape was active because Netscape
paid people to fill in all the slots on paper, to say, yes, we have somebody on part X, Y
and Z. Yes, we have a QA engineer on part X, Y and Z, modular X, Y and Z. Even if
those people weren’t actually very effective in those roles there was somebody who was
designated to be in those roles. When Netscape left the project, when AOL dissolved the
Netscape client team we were left with on paper the same people and some of those
people continued to stay involved because it was an open source project and maybe they
still cared about it, right? But then we had a whole bunch of stale contributors who were
no longer involved and it’s really interesting.

So, at the same time, Firefox when | was starting the development cycle this was a year
before Firefox [went out] and new people started to get involved because they were
getting excited off Phoenix or Firebird or whatever it was called at the time and they
started to recognize, hey, look, there’s a problem area and nobody’s taking care of that
area of the code, there’s a crap load of bugs accumulating in that area and nobody’s
taking care of it so they’ll jump in and take it and it just grows organically like that.
Suddenly people are filling in the holes and it’s evolving into not such a problem
anymore.

With the QA situation, we’ve never gotten back to a state where we actually have QA
modular owners like we used to at Netscape. In fact, it’s gotten to the point now where in
the bug system if you look at who is the QA contact for a bug, it’s no longer a person but
rather a fake e-mail address that actually— Or like a mailing list address so that anybody
interested in that category of bugs can just sort of watch bugs that are assigned to that
dummy QA address. Details, but the point is that we— The system has evolved from
where it was at Netscape where there was much more structure in terms of who
“responsible” to a system where kind of it’s more dynamic in that whoever takes
ownership has ownership, which is much more healthy, in my opinion because at
Netscape there was all this false ownership | felt like and that caused a lot of problems
because you say, well, aren’t you responsible? Well, sometimes people didn’t carry their
weight but— because of the hierarchy of Netscape and everything, it’s sort of—

| don’t know how to explain it. It’s like the company wanted to basically fill out all the
positions and make sure that people were there, but that didn’t mean that they were the
most effective and now we’re in a position where only people who care about project are
contributing and so we’re getting more effective contributors, not just people who are
contributing because they getting

OR: Have you ever clashed with any other developer over a particular point of—
DF: Sure.
OR: Can you kind of describe how you resolved those disputes?

DF: So, you know, sometimes they’re not well resoled. Sometimes the disputes are
small enough that it doesn’t matter. Oftentimes when the dispute is significant enough,
logic wins and oftentimes the kinds of disputes that happen they tend to be— They tend
to stem from misunderstandings or people not having all the information and that’s
almost always the case. Somebody will say something that sounds absurd to the other
person but that’s because that other person doesn’t have all the information that the other
person has and people aren’t always the most patient when they want to explain it, so if
you’re looking for specific examples maybe— | can give you a specific trivial example.

TS: Sure, yeah, that’s great.

DF: More recently there was sort of— Actually | don’t know how trivial this is. | was
having a debate with another engineer about whether or not we should drop support for
Windows 95, 98 and Windows ME and technically there’s a lot of additional work that’s
required to support those older versions of Windows and our understanding is that very
few of our users actually are on those older systems. Perhaps Firefox attracts people who
also buy a more modern operating systems installed on their computers, more text savvy
folk, but nonetheless, maybe 2 to 3% of our users are on old versions of Windows so |
said to him, I said, well, maybe it’s too difficult for us for Firefox 3— Now, this is a year
out, to say maybe for Firefox 3 it’s too difficult for us to support Windows 98 because
we’re changing some of the subsystems in such a way that it would be a lot of work to try

to continue to support Windows 98 so | said maybe it’s too difficult for us, but what if
somebody came along that blessed us with a patch and said here you go, here’s Windows
98 support, what would you do because this developer was saying— Was actually
wanting to actively remove code that did support Windows 98 even though the whole
project is—

The whole Firefox 3 right now in the development version does not support Windows 98
because a certain chunk is missing. There’s still a large bit of code that’s in there to
support Windows 98 and he wanted to remove that bit and | was against it. | was saying,
why remove it if it’s there. Why not let somebody come along and contribute that
missing piece that— We’ve gone and broken the support for this 98. Maybe somebody
will want to come and add support for it and he argued, well, it could be done in a
different way. It could be done as a shim in such a way that our code is completely—
Looks as though it doesn’t support Windows 98 at all and I said, well, that sort of puts a
lot of extra burden on that guy who wants to support Windows 98 to the point where
maybe he won’t even want to do it, but he was very adamant that he didn’t want his code
to have all this ugly code— What he described as very unclean and ugly code that tries
to support Windows 98 and because this is sort of a point of contention where 1I’m sort of
on the— | feel like that 2 or 3% of users might be significant enough that it’s worth it to
us even though maybe it’s not, but when | started the argument with him I didn’t realize
that he has sort of an alternate idea of how Windows 98 could be supported that maybe is
not so unreasonable and so he felt like he had said all these thing before, so he was very
not interested in having the discussion so it made it hard for me to ask questions because
he was quite reluctant to sort of be patient and explain his thoughts.

TS: You work primarily on the rendering engine.

DF: 1 guess, yeah, | work on components of the rendering engine. 1 actually don’t work
on sort of anything having to do with actually laying out frames on the page and sort of
anything that’s actually rendering, | work on sort of the support for the rendering engine
such as the networking layer, such as various sort of little [old] subsystems that are used
by the rendering engine to provide sort of the cross platform base on which it’s built.

TS: And what kind of interests you about that work?

DF: Well, like, for instance, | find that Firefox has got something very unique which is
an application platform that is completely cross platform, like completely— It sort of
allows you to build very rich applications, GUI applications that don’t— that are
independent of what operating system you’re running on. The fact that Thunderbird is
built off the same technology, the fact that numerous other applications are cropping up
that are built on the same technology, the fact that we can so easily deploy extensions to
Firefox for all three platforms. You realize the Google toolbar for Firefox is the very first
product from Google that supports Windows, Linux and Mac all at the same time and in
multiple languages, all at the same time and that’s because the Mozilla platform makes it
(a) extremely easy to target multiple operating systems and computer architecture, (b)
extremely easy to localize. Localization is easier in the Mozilla platform than any other

toolkit I could imagine for building applications because, and this is getting technical—it
not only makes it very easy for people who are non-technical to change the strings and to
author the local— You know, to change the text that appears.

It also makes it very easy for them to do so in a way such that the application itself sort of
adjusts according to the size of the strings. This turns out to be really a detail that causes
a lot of work for software engineers. When they localize they find that the string is too
long now and then they have to go change some pixel parameters somewhere and so
somebody who’s non-technical who’s like very good with converting English to
Japanese, | have trouble with that, right? And they can’t do that on their own, but in the
Mozilla world they can do it on their own because the system is such that it dynamically
adjusts size of everything according to the size of text. Not only that but if they do need
to make tweaks to the way that the Ul is rendered, the kind of tweaks that they would
make, it’s sort of similar to tweaking a web page using the way HTML and CSS and
JavaScript all come together to build web pages, Mozilla’s application framework is very
similar and so it’s very accessible to people who are non-technical.

TS: What would you attribute that kind of flexibility to? Would you attribute it more to
just the kind of happenstance of legacy of the code that was inherited from Netscape or
would you attribute it to the way in which Mozilla’s developed?

DF: Both, because— So, the thing about Netscape is that Netscape threw away their
code, right? And what they decided to do was just start on this thing called Mozilla.
Sorry, the old thing was called Mozilla 2 [dp(?): or too] but they decided to start this new
Mozilla, this Gecko thing and part of the goal there was to say look at this platform we’ve
provided to web authors, web content authors. This platform allows them to deliver
applications to any platform and in this very compelling way that’s very easy for new
people to kind of come in and play. You use the source of anybody’s HTML like the
web is the largest open source project in the world. It’s amazing. The fact that you could
view the source for a web page in the browser is perhaps one of the things that in my
opinion allowed the web to grow the way it does because anybody can go and look under
the hood and somebody who’s like just starting out in their [career] as a software
engineer can run with it, can grab things.

They can see how, oh, they did this really neat thing on their web page. They can grab it
and they can copy it and do all these great things and so the people who were building
Mozilla, they realized we just built this thing that allows people inside this window to do
just about everything in a cross platform way. Why don’t we extend it beyond that
window? Why don’t we use that sort of technology to actually build the application itself
that’s sitting on the guy’s desktop so it turns out, if you look at Firefox, it’s really just
inside the outer window, the window that’s provided by Windows. Everything inside is
really just a web page. It’s just sort of nesting of web pages and that technology, that
decision back in 98 or 99 or whenever, those guys | think that was such a brilliant move
because it’s re-using the technology that drives the web platform to build the application
framework and so it’s sort of a small step to go from this thing you’ve built in this
[countenary] out to this thing that now can drive actually fully applications because it’s,

again, JavaScript based again, content based, like instead of HTML, you have XUL. It’s
a very a similar concept. CSS, again, to do the way— That controls sort of all the colors
and themes and the style to give the artist their ability to draw, to present the [UR] in the
way they like and so—

TS: Soin that way the technology lends itself to independent development by open
source communities.

DF: Right. Ithink so. I think it makes it— It sort of lowers the bar for people to build
cross platform applications and I really— The challenge though is that unlike the web
platform this application platform is not as polished. | mean, it’s so similar and it’s so
close to being exactly what you want but it suffers from many things like it’s not as well
documented as that web platform. It’s not as bug free as that web platform. There’s
quirks. There’s things where in order to get around and to be successful you have to get
on that IRC challenge and ask somebody and that’s a huge barrier to entry, so on one
hand it’s like technology-wise, it’s like exactly the direction you want to be going but it’s
like it’s not finished and Netscape took it to the point where they could build a browser
with it that had a mail program integrated in it, that had a web site composition tool
integrated in it. They took it to that point. They never finished it and so even today when
people, my co-workers from Google are trying to build an extension and they’re like how
come this list box, you know, when | add an element inside this list box, it doesn’t render
unless I put some weird tag at the bottom that seems to have no relevance at all to the list
box and it’s just some bug and it’s like it took them six hours to figure out why that was
needed and that it was needed and all that and then so people here are | think are
exceptional software engineers so they’re able to have that kind of stamina but I think a
lot of people would run away and I think a lot of people do, so it’s really unfortunate that
Netscape— They didn’t have the research just to take it all the way through to actually
build a proper complete polished toolkit, but it’s—

Time and time again, people get attracted to it but then they get frustrated at the same
time. There’s some effort at Mozilla in the open source community now to try to take it
to the next step, take it to the next level and some other companies are starting to leverage
that like 1 guess you’ve heard of Songbird maybe so that’s built on the Mozilla
framework, Mozilla toolkit and they were able to put together their application pretty
easily. | know that their application, at least the first version I tried was not very good or
had a lot of issues, but I think that they’ll be able to work those things out and so
hopefully it’ll be a success story for the Mozilla platform.

Flock came together very quickly as an alternate browser. 1’ve seen quite a few other
sort of applications. It turns out my brother works for a company that created a sort of a
stand-alone health application built on the Mozilla framework. He got involved using
that technology because of me, | imagine, he knew about it. 1 don’t know if he would’ve
known about it if he hadn’t, but then I didn’t sell it on him. 1 just sort of suggested it to
him and then he tried it and at first he didn’t want to go there because it seemed
unpolished and he went down another route using another toolkit, but that ended up
having its own sort of issues and he ended up scraping that version and going back to the

Mozilla platform and ended up with a [shipping] product and he was very happy with it
and their company got acquired and so on. So | think that it’s possible that in the near
future we’re going to see more and more of these kinds of applications coming up that
leverage Firefox’s technology.

TS: Do you think that there’s, you know, working kind on the back end, do you think
that there’s a difference in culture between the people who work on the back end and the
people who work kind of on the user interface and—

DF: Certainly.

TS: Do you have any sort of— What’s your sort of impression of the people who work
on the other end?

DF: Well, so, one of the things is that, again, so in order to— So because of this
application toolKkit is so accessible because it’s just— Since it’s mostly built without
having to ever compile anything and that allows a lot of people who are not as strong
with computer science to come in and participate and sometimes those people can be—
Like somebody who’s a very good graphics designer who knows how to fiddle with
HTML could actually be a very effective contributor to helping improve the Firefox Ul
and we even have some folks here who are building extensions but they’re C++ coders.
They’re not coders at that level who work with compiled languages but they’re very good
at working with JavaScript, very good at working with the [APIs] at that level and
building really compelling things. It’s like they’re masters of that domain and so | think
that there’s a real difference between people that work at the front end and people that
work at the back end. It’s like the people who work at the back end, they tend to be
people who really absorb themselves in the C++ world and then like I said, the people in
the front end absorb themselves in the JavaScript world and not as many people sort of go
between.

TS: Sothere’s a boundary between sharing the two.

DF: Sure.

TS: And are there tensions across that boundary?

DF: Well, what do you mean, like what kind of—

TS: Well, do conflicts arise between—

DF: Sure, okay, yeah. Definitely there are potentials for conflicts like in some sense
Firefox is simply using Gecko and the Mozilla platform as a platform to build an
application and so Firefox as an application is really just interested in having that stable
base or just having that thing that it’s providing what it needs and if that thing is

sufficient, Firefox doesn’t need anything else from it and so they’re going to build their
application [off of it], but the people building that platform, they see Firefox as their

vehicle to get that platform out there and so they want to put things in that platform that
make it compelling, in their mind, and so sometimes they’re putting things in there that
cause risks because any change causes risk and sometimes that’s not exactly what the
front end people want, the people who are focused on building that application and so
we’ve always had this sort of tension and people have said, well, shouldn’t we treat the
back end as a separate product with its own release cycle and let Firefox grab a stable
snapshot and built off of that and other people say, well, but Firefox is the only real
vehicle for this platform, it’s the main vehicle and unless Firefox is constantly getting the
latest version of the back end, then the back end’s not getting any sort of constant testing
and so—

TS: Where do you fall on that debate?

DF: Well, now I think that’s a compelling argument. | think that we want to sort of— |
think we want to go a world where we can have stable snapshots of the platform but what
that requires is that we actually have a well-defined interface between the platform and
the applications and, again, and sort of one of the problems with the Mozilla platform is
that the interface is not well defined. It’s very broad, quite encompassing and so it
doesn’t— It sort of reveals all its inner details to the outside world. It’s a very exposed
interface, if you will, and so it makes it very easy for applications to come inside, twiddle
with things that maybe the platform folk didn’t expect people to twiddle with, but that
introduces dependencies between the front end and the back end that then become very
difficult to sever and make it such that the back end and the front end need to march
together in lock step. Otherwise, things fall apart so it then becomes a tremendous effort
to decouple them and maybe not so worth it.

TS: To what extent do you think Mozilla has relied on the work of volunteers, really
rely on their work?

DF: Largely. Sometimes underestimated, especially by management at various
companies that 1’ve worked for. People tend to try to say, oh, we need something done
to— We want to contribute to Mozilla. Maybe some company comes along and says we
want to make this change and they go to Mozilla Corporation and say we want to make
this change and the Mozilla Corporation’s like, well, they have only so many people
there, only so much time and there’s slowness involved there and people don’t always
understand that the way to contribute is actually just to go and contribute to the open
source project, become a member of the community, prove yourself in that world such
that— Or make your patches there. Get people to review them. Get them approved and
just go directly to the source. People think the source is going to be Mozilla Corporation
or Netscape, but that’s actually not effective and it turns out that there’s so many
contributors outside of these companies who’re maybe not full-time contributors but
they’re nonetheless part of what keeps the thing going but it’s sort of a mistake to not see
that as so important and so much a part of it. | don’t know if that’s really answering your
question.

TS: Yeah, but sort of following off from that, why do you think those people who come
in, why do you think they think the right thing to do is go to Mozilla Corporation rather
than—

DF: Because they just want— People like to have an entity to go. They like to have a
company to go to. They like to have an engineering director to go talk to. People like
that kind of structure so that they can get promises. They can know that that there’s some
organization in that way, but a lot of the work gets done by people who are outside of this
organization and that work can be very small, from helping to triage bugs to sort of
raising alarms when certain problems occur. | see a huge—

To go down a slight tangent, here at Google we’re working on software. | think that’s
some great engineering process in place here. However, in some ways it doesn’t— It
doesn’t have the kind of testing that Mozilla has where when we put in a change if it
broke some obscure configuration, something very obscure, we’ll hear about it the next
day or the next week because there’s so many people who are involved grabbing the
snapshots every day testing, whereas here at Google when we put out a change it could
completely— I’m talking about like a client product. It could affect some obscure
configuration and we won’t hear about it until after we release and then we have to
backpedal and do a lot more work. That’s a huge difference | feel and | feel like with
Firefox we’re able to be a lot more confident that we’ve sort of dotted all the i’s and
crossed all the t’s before the release comes because when we put out an alpha release we
get hundreds and thousands of people downloading it and it’s just tremendous.

TS: Why do you think people volunteer?

DF: Oh, I think it’s that they care about the product. | think a lot of people volunteer on
Firefox in particular because of the relevance of the product. They want— Oh, I got
involved because I— 1 got involved and | was attracted to Mozilla because as a college
kid I was using the Linux Desktop and I felt like this was amazing that I can use this and
the only reason | liked it— This is a real candid but I think it’s relevant. | was running
MATLAB at school in the lab on these Unix systems and it meant | had to go to the lab,
sit down and do my work there. Somebody in the lab said, hey look, if you install Linux
you can run MATLAB at home. This was before MATLAB released their version for
Windows. Well, maybe they had released a version for Windows but it was very crappy.
It didn’t compare to the version for Unix and MATLAB being into open source
themselves, they went and released and the Linux version and it worked really well and
so | was compelled to install Linux at home and run MATLAB at home and then | was
able to get my schoolwork done so much faster and so I thought this is incredible. This
Linux thing has saved me so much time and then the only thing is, though, kind of the
browser on Linux wasn’t so great and it was using Netscape 4 and Netscape wasn’t really
doing anything with Netscape 4 at the time and if you’re on Windows you can get
Internet Explorer so much better browser and so the idea of like making a browser for
Linux that would work so much better than—

TS: What year was this?

DF: ’97,°97, ’98, that timeframe. | mean, Linux was very immature at the time but it
was enough so that | could run MATLAB and getting graphics working in Linux at that
time, 96, was a very not easy. It was very tedious but there was some fellow in my lab
at school who was very keen on helping and introduced me in that way, so personally
before | even got involved in Mozilla, | started working on an open source project of my
own that was something for the [community] desktop that would allow me— It was like
Quicken for Linux because | hated having to reboot into Windows to do Quicken. This
was before online banking and I just do online banking and I don’t care about Quicken
anymore, but so | got— | wanted to write some code that would do this and I thought I’ll
just release it open source. This was when SourceForce had just gotten started and | put
my project out on SourceForce. It’s like no. 102 or something like that, so this was my
introduction to open source and I got so— 1 was so blown away by the fact that 2,000
people downloaded it in one week. | thought that was the most amazing thing and it’s
nothing compared to what Mozilla gets but | thought that why would everybody— So
everybody else cared about it, I guess, you know, or these other people— Some guy in
Italy started contributing patches and some guy in France started contributing patches and
that was so exciting. It got me really hooked and so then that’s why when | went to work
for AOL and I knew that I could come to the west coast and work on an open source
project— | left out that detail, it was the open source project that really attracted me to it
and in particular, trying to make the Linux Desktop better really attracted me to it.

Now I run Windows on my laptop and | guess sort of because I’m so frustrated with
trying to run Linux on my laptop. | gave up.

TS: So | understand that during the early development of Firefox the CVS access was
restricted to sort of a small group of people. Why was that?

DF: So Firefox, sort of the application layer of Firefox was restricted. | wasn’t part of
that group and so basically the way | understand it was that Ben and a few other folks,
they decided that— See, in some ways, Firefox was a revolt from the Mozilla process
and I know people in the Mozilla world don’t like hearing that but I think it’s kind of true
because it’s also— It was a revolt not only from the Netscape process but also from the
Mozilla process which had too many cooks in the kitchen. Both really. And not enough
emphasis on just we’re going to build a good [app]. And a tight team could do that and
the tight team, Ben Goodger and folks, David [Hyatt] and Blake and Brian

and other people who were just very focused on, look, we’re going to just build a really
simple browser. It’s not going to have all these crazy bells and whistles that the Netscape
product had and we’re not going to let anybody else try to come in and sort of say, no,
you have to have this piece either. 1I’m sure Ben probably talked about some
of this.

| think it worked very well for sort of bootstrapping this effort because somebody had to
do that. Somebody had to rock the boat and say no, look, guys, we’re doing it all wrong
and at that time, whenever they tried to say, look, guys, we’re doing it all wrong, nobody
wanted to hear it and | think that this was good because it sort of takes some sort of

something that goes really against the grain to sort of make change and now we’re sort of
at a turning point where we want to sort of— We don’t want that sort of closed
development model for Firefox. Again, I’m only talking about the application layer.

Meanwhile, the back end platform was developed in the same way it always had been, in
a very sort of very open way with a different hierarchy, but since Firefox was done on the
side and when it became— started to appear like this was the way to go, then people
started getting behind it, but somewhat reluctantly. A lot of the reluctance of the Mozilla
community to get behind Firefox initially had a lot to do with the fact that the people who
started Firefox were so going against the grain in this process.

TS: And does that sort of difference in process still exist?

DF: Notas much and trying to arrive at a new process basically that’s good for Firefox,
that’s good for Thunderbird, that’s good for the Mozilla community because it’s—
People move on. Dave Hyatt left to go to Apple. Blake’s not really involved anymore
and so it’s important to bring in fresh blood and make it easy for fresh blood to get
involved because some of the most— Some of the best contributors lately have been new
people and new people are sort of the life blood of any project because people bring
talent and people who are sufficiently compelled to be new people usually have
something that they really want to do and that passion is something really important to
tap into, so I think it’s good that we’re moving towards a direction to try to sort of open
Mozilla more, open Firefox a little bit more, make it easy for new people to come in.
Ben and | are seeing first hand how hard it is for new people to get involved just by
looking at our [core group here at] Google who’re also trying to contribute. Some of
them are trying to contribute directly to Firefox, but finding it to be quite an
overwhelming project.

TS: Why do you think Mozilla but particularly Firefox has been able to attract so many
users?

DF: Because it’s simple and it just focuses on being a good browser. | think it gets that
part right. It just works. That’s like the thing that people want. My wife said to me the
things she wished that they would fix with Firefox was making printing work better. She
didn’t care about any other bells and whistles. Just wants to be able to have a reliable
product, you know what | mean? And that’s what Microsoft did well. They blew the
pant off Netscape because [IE] was worked really well and, of course, they had market
advantage and all that kind of thing, but I think it was a better product. Netscape wasn’t
building a better product at that time and Netscape crashed. Netscape had all these
issues, in my experience, and so it’s really important for Firefox to be something that
people view as a rock solid product that they can depend on because then they’ll use it.

TS: Maybe you could just briefly explain the relationship between Google and Mozilla.

DF: Google’s just about trying to help Firefox succeed. That’s our team’s mission.
What can we do to help Firefox succeed? There were some people that work on

developing it, help them market Firefox, you know, whatever we can do. Help them—
Like, for instance, | think we do this thing where we bundle the Google toolbar with
Firefox and we encourage people to point users at that and if they do, they get some sort
of benefit. | don’t know the details of how it works but sort of our effort to sort of help
people find out about Firefox, to get the word out, encourage people to market it for us,
things of that sort. | think that— So our relationship with them is more of a how can we
help.

TS: How do people at Google, other people at Google not working on Mozilla products,
not working on Firefox, see the people who are working, sort of the Firefox group?

DF: Yeah. Well, I think some people see it as, wow, this is great, now we have a
resource like— If I’m building a web application, like somebody who works on GMail
will come and say help me, I don’t understand why this doesn’t work in Firefox or
something and we can help give them some insight or in turn, we can learn about the
kinds of things that are causing GMail and Maps headaches. People who are building
these complex web apps often run into barriers with browsers and that’s really important
feedback for us as browser producers to know about, to help us understand what things
do we have to do to make the platform more stable or better so that these things like
Google Maps work better.

TS: How would you characterize the relationship between people who are sort of kind
of on the inside either at Mozilla Corporation or kind of closely associated like across the
street and kind of the larger community, the outside, the kind of volunteer community?
How does that work? Is it cooperative? Are there resentments?

DF: 1 think that there’s not too much resentment. | think that people on the outside have
sort of been asking for more transparency in decision making or at least more information
about how decisions are arrived at and so recently we’ve been trying to make— Being at
Google, being on the outside, if you will, and having a lot of co-workers who are totally
new, sort of able to see where people get stuck. Like if my product manager didn’t
understand which mailing list he needed to be on in order to understand what was going
on with Firefox 2 and this was— Even though Mozilla sort of posted on Wiki, it’s like
how are you supposed to find that Wiki and how is somebody supposed to know that
that’s there and if they miss one e-mail where it was mentioned they’re kind of lost
forever and you can’t just go to the Mozilla homepage and say, okay, | want to find out
what’s going on with Firefox 2 development. Where the hell do you go? And so it
requires people who already know to tell you and so that’s a problem and so otherwise,
though, I’d say that there’s a lot of working together with the community, like we’ll have
meetings— The Firefox 2 product meeting is completely open to anybody who wishes to
attend. 1 bet a lot of people don’t know that.

Similarly, we have meetings where we discuss things for the platform and routinely
people who are in the community are invited to attend and so | think the biggest problem
is just sort of that initial sort of ramping up. How do you find out where things are?

How do you figure out where to go, who to talk to and the problem if there’s any
problem.

TS: Just briefly because we gotta go, how would you define a successful open source
project? What elements and practices do you see that are necessary for developing a
successful project?

DF: Wow, there’s a lot of things. Well, | think it’s important that the process be open
not just in source but also in process and development meaning that it’s like we’ve been
saying, that it’s open for new people because that’s so important getting new people. It’s
important that people— It’s important that sort of the design decisions are open so that
they can be critiqued in advance of a product release. It’s important that you’re building
the right product, building a product that actually fits some need. Sometimes open source
projects are just sort of a developer’s toy project that they just wanted to do and it’s not—
And so that’s great and that fits a lot of needs and is great, but it doesn’t always— But if
you’re trying to build something that’s large scale that’s like Firefox, I think it’s really
important that the community be focused on what they’re building. At the end of the day
we’re not building Gecko, we’re building Firefox. That’s what users are going to use and
people are going to say, well, did Firefox work well? They’re going to say did—
They’re going to tell their friends that they used Firefox. They’re not going to tell them
to go use Gecko.

TS: Last question. What do you think the popularity of Firefox will do for the open
source movement as a whole and where do you see the future of open source?

DF: Well, I think it indicates that open source projects can be wildly successful. 1
mean, this one was very successful, even though we’re only 10% of the user base or
whatever the number is. That’s huge. That’s got to be the most successful open source
project in that regard in terms of just the number of users that it’s touched. Of course,
there’s other projects that are wildly successful, too, and server side stuff, open source is
very successful but that’s because it’s tech-minded people who are adopting in their
world and that’s a much easier audience to tap into, so | think that Firefox is great for like
sort of paving the way, in a way, for other things like open office and other consumer-
oriented projects because it shows that you can build a successful consumer-oriented
product in an open way.

A lot of times people, product people, they feel like they need to have tight control over
everything in order to build their product, especially if it’s something that’s user [facing].
They don’t want to relinquish control to people in the community but it’s not really about
relinquishing control. In the Mozilla world people who are— Control is based on merit
and we want to welcome dissenting opinions about what we’re doing as much as possible
so that we know what the best thing to do is, so hopefully Firefox is sort of an example of
how an open source project can be a successful consumer product or can be used to
generate a successful consumer product.

TS: Great. Thanks very much. This was really great and is there anybody sort that we
should talk to that we probably don’t already know about. We kind of know the names of
the key people, the 20 people you’d think we’d know about but is there anybody who’d
like have an interesting story that really won’t get told otherwise?

DF: 1 don’t know if Aaron Boodman is on your list. He’s Googler who wrote Grease
Monkey. He works on our team. I’m sure he’d have interesting stories to tell about his
perspective of Firefox being that he used to work at Microsoft. He got excited about
Mozilla because he could build Grease Monkey and all the various other things. | bet
he’d have a lot of interesting stories for you.

TS: Great.

OR: Thanks a lot.

